
EViews COM Automation

MARCH 10, 2015

EViews COM Automation allows an external program or script to launch and control EViews

programmatically and to transfer data back and forth. This allows you to use much of the functionality

of EViews within your own programs without having to display the EViews window itself.

Licensing Restrictions
EViews COM Automation is available for both Standard and Enterprise Editions.

Web server access to EViews via COM is not allowed. When being run by other windows services or

being run remotely via Distributed COM, EViews will limit COM access to a single instance. Please

contact IHS if you have any questions regarding your license.

Local Registration of EViews COM Automation
In order to control and use EViews via COM, you must first verify that EViews COM Automation is

properly registered on your local machine. By default, our EViews installer performs this necessary

registration step for you. To verify and perform proper registration, launch EViews and type in the

command: REGCOMPONENTS

This will bring up the Register Components dialog.

This dialog lists all EViews items that need to be

registered on your local machine in order for those

features to work properly. “COM Automation & OLE”

appears first in the list and also displays whether or

not it was been properly registered. If this item does

not say “Registered”, please click the “Yes (All)”

button to perform a full re-registration. You will

need to have local admin rights to perform this step.

Adding a Reference to the EViews Type Library
The next step is to add a reference to the EViews Type Library to your development project. This allows

your development environment to be aware of the various EViews COM objects and their methods.

In this document we’ll describe in detail how to use and control EViews from a Visual Studio 2012

VB.NET project and from an Office VBA project (such as Excel 2013) -- but these instructions apply

similarly to any other Windows programming environment that allows the use of COM objects (such as

C++, VBA Script, MATLAB, etc.).

In Visual Studio, open your project file,

then go to the “Project” menu and

select “Add Reference…”. On the left,

select “Type Libraries” under the

"COM" node. You will see a list of

available local type libraries appear on

the right list. In the list, look for

“EViews x.0 Type Library” where x is the

version of EViews you are using (1.0 is

for EViews 7, 8.0 is for EViews 8, and

9.0 is for EViews 9 – see Choosing an

EViews Version for more details). Check

the associated checkbox and then click

OK to save these changes to your

project.

In Excel, open your spreadsheet, then switch to the VBA

development environment (press ALT-F11). Under the

"Tools" menu, click on "References…". Scroll down to

"EViews x.0 Type Library" and check the associated

checkbox. Click OK to close the popup.

Note: If you cannot find any version of the EViews Type

Library in the list, this means EViews COM Automation has

not been properly registered with Windows. Run EViews

and type in REGCOMPONENTS, then click the “Yes (All)”

button to re-register (see Local Registration of EViews COM

Automation).

In other development environments, please refer to their instructions in properly using COM objects.

Our type library definitions are located in a file named "EViewsMgr.dll" located in the EViews

subdirectory.

Creating an Instance of the EViews Application Object
Every time EViews is launched by a user, an associated EViews Application object is created internally to

virtually represent that running instance of EViews. All EViews COM functionality is accessed through

this Application object and all external COM clients and programs (such as a VB.NET program or Excel

VBA) need to use this Application object in order to exchange EViews data, run EViews commands, etc.

But in order to get an instance of the Application object, you must first get an instance of the EViews

Manager object.

Figure 1 - Visual Studio 2012 'Add Reference' Popup

Figure 2 - Excel 2013 VBA 'References' Popup

EViews Manager Object
The EViews Manager class is used to create new instances of EViews, connect to any current instance of

EViews already running, or to connect to a specific EViews instance by specifying its Process ID.

Manager.GetApplication
This method returns an instance of the EViews.Application class. It also allows you to specify whether to

create a new instance (by launching a new instance of EViews) or to try and connect to any instance of

EViews that is already running.

VB.NET Example:

 Dim mgr As New EViews.Manager
 Dim app As EViews.Application = mgr.GetApplication(EViews.CreateType.NewInstance)

VBA Example:

Dim mgr As New EViews.Manager

Dim app As EViews.Application

Set app = mgr.GetApplication(ExistingOrNew)

Valid parameter values to GetApplication are: NewInstance (always create a new instance of EViews),

ExistingOrNew (look for existing instance of EViews and create another one if not found), and

ExistingOnly (only look for existing instance, do not create one).

By default, a new instance of the EViews application is created without any visible windows. To display

the EViews frame window, use the Application object’s Show method.

Manager.GetApplicationByProcess
This method returns an instance of the EViews.Application class. If you specify a Process ID (PID), it will

attempt to connect to that instance and retrieve that specific Application object. If PID is not specified,

this method will look up its current PID and use that to look for a match (finds the instance of EViews

that was already created by your program).

VB.NET Example:

 Dim mgr As New EViews.Manager
 Dim app As EViews.Application = mgr.GetApplicationByProcess(21)

VBA Example:

Dim mgr As New EViews.Manager

Dim app As EViews.Application

Set app = mgr.GetApplicationByProcess()

The PID for running applications can be found by running the Windows Task Manager and displaying the

PID column in the Processes tab view. Go to the View menu->Select Columns to display this column.

Note: Calling GetApplication or GetApplicationByProcess is the only way to get a usable EViews

Application class object. An Application object that is instanced directly will not be properly initialized

and will not be usable.

EViews Application Object
The EViews Application class provides access to EViews functionality and data. It has the following

methods:

Show()

Hide()

ShowLog()

HideLog()

Run(commandString)

Lookup(patternString, typeString, returnType)

ListToArray(nameString)

ArrayToList(nameArray)

Get(objectName, naType, naString)

Get2D(objectName, naType, naString)

GetSeries(seriesName, sampleString, naType, naString)

GetSeries2D(seriesName, sampleString, naType, naString)

GetGroup(seriesNames, sampleString, naType, naString)

GetGroupEx(seriesNames, sampleString, naType, naString, groupOptions)

Put(objectName, objectData, dataType, writeType)

PutSeries(seriesName, seriesData, sampleString, seriesType, writeType)

PutGroup(seriesNames, seriesData, sampleString, seriesType, writeType)

Application.Show()
Displays the main EViews window. By default, when a new instance of EViews is started via the

Manager.GetApplication method, it is hidden.

Application.Hide()
Hides the main EViews window from view.

Application.ShowLog()
Displays the EViews COM Output Log window. Will only be visible if EViews itself is visible.

Application.HideLog()
Hides the EViews COM Output Log window.

Application.Run(commandString)
This method is used to run an EViews command and does not return a value. Some examples of EViews

commands include:

VB.NET Example – Opening a workfile:

app.Run("wfopen c:\mywork.wf1")

Excel VBA Example -- Creating a series:

app.Run "series x"

Application.Lookup(patternString, typeString, returnType)
Returns a list of object names from the current active workfile that match the specified pattern and/or

type. patternString is a required parameter and supports the use of wildcards (e.g. "*" or "g*") and can

also specify multiple object patterns that are space delimited (e.g. "g* s*"). typeString is optional and

supports all the basic types defined in EViews such as "series", "group", "matrix", etc. You can define

multiple types in a space delimited format (e.g. "series group").

The returnType parameter is optional and specifies how to return the list of matching object names:

LookupReturnString – returns the names in a single string that is space delimited.

LookupReturnArray – returns the names as a 1-dimensional array of strings.

LookupReturnMatrixAsRows – returns the names as a 2-dimensional array of strings (1 column,

multiple rows). Excel users can apply this return object directly to an Excel range of equal size.

LookupReturnMatrixAsColumns – returns the names as a 2-dimensional array of strings (1 row,

multiple columns). Excel users can apply this return object directly to an Excel range of equal

size.

VB.NET Example:

app.Run("wfopen c:\mywork.wf1")

Dim s As String = app.Lookup("s* g*", "series",

EViews.LookupReturnType.LookupReturnString)

's = "s1 s2 s3 g1 g2 g3"

Excel VBA Example:

app.Run "wfopen c:\mywork.wf1"

Dim s

s = app.Lookup("s* g*", "series", LookupReturnMatrixAsColumns)

Dim rows, cols As Integer

rows = UBound(s, 1) – LBound(s, 1) + 1

cols = UBound(s, 2) – LBound(s, 2) + 1

Dim wsht as Worksheet

Set wsht = ActiveSheet

Dim rng

Set rng = wsht.Range(wsht.Cells(1, 1), wsht.Cells(rows, cols))

rng.Value = s 'puts each name into its own cell in the first row

Application.ListToArray(nameString)
A utility function to convert a name string (space delimited) into an array of strings (1 column, multiple

rows).

Application.ArrayToList(nameArray)
A utility function to convert a name array into a single name string (space delimited).

Application.Get(objectName, naType, naString)
Retrieves data from an object in the current active workfile. The objectName parameter can specify a

single object name, or an expression. naType and naString specifies how to return values that are

missing in EViews (NA). The allowed values are:

NATypeAsEmpty -- returns an empty or blank value

NATypeAsString – returns the specified naString value (if specified) in place of the NA

NATypeAsExcelNA – returns the Excel NA value (for use in Excel cells)

If not specified, naType defaults to NATypeAsEmpty.

For example:

VB.NET Example – Retrieve series "x":

Dim o as Object = app.Get("x")

Excel VBA Example – Retrieve an equation's covariance matrix:

Dim o

o = app.Get("=eq1.@cov")

Note: The types of EViews objects that can be returned include series, vectors, matrices, tables, and

scalar values.

Application.Get2D(objectName, naType, naString) (only exists in EViews 8.0 Type Library and later)
Similar to Get, but returns all data as a 2-dimensional array, which is especially useful when applying

these values to an Excel Range Value property.

Excel VBA Example – Retrieve series “x” and place into an Excel range:

Dim o

o = app.Get2D(“x")

Dim rng as Range

Dim wsht as Worksheet

Set wsht = ActiveSheet

Set rng = wsht.Range(wsht.Cells(1, 1), wshet.Cells(11, 1))

rng.Value = o

Application.GetSeries(seriesName, sampleString, naType, naString)
Similar to Get, but restricted to retrieving a series object only. Also supports a named sample or a

custom sample string to filter the rows that are returned. naType and naString specifies how to return

values that are missing in EViews (NA) (see Application.Get for description of different NATypes).

VB.NET Example – Retrieve series "x" using named sample object "sample1":

Dim o as Object = app.GetSeries("x", "sample1")

Excel VBA Example – Retrieve series "x" for date range 1980 thru 1990

Dim o

o = app.GetSeries("x", "1980 1990")

Application.GetSeries2D(seriesName, sampleString, naType, naString)
(only exists in EViews 8.0 Type Library and later)
Similar to GetSeries, but returns all data as a 2-dimensional array, which is especially useful when

applying these values to an Excel Range Value property.

Excel VBA Example – Retrieve series "x" for date range 1980 thru 1990 and place into an Excel range:

Dim o

o = app.GetSeries2D("x", "1980 1990")

Dim rng as Range

Dim wsht as Worksheet

Set wsht = ActiveSheet

Set rng = wsht.Range(wsht.Cells(1, 1), wshet.Cells(11, 1))

rng.Value = o

Application.GetGroup(seriesNames, sampleString, naType, naString)
Similar to GetSeries, but can retrieve multiple series objects as a 2-dimensional array. The seriesNames

parameter can be a string with each name delimited by a space, an array of strings, or an Excel Range

(either a row or a column of values). This parameter can also make use of wildcards (*) to search for

names that fit a pattern. naType and naString specifies how to return values that are missing in EViews

(NA) (see Application.Get for description of different NATypes).

VB.NET Example – Retrieve all series objects whose name starts with x or y:

Dim o as Object = app.GetGroup("x* y*")

Excel VBA Example – Retrieve series "x" and series "y" (along with the date labels) for date range 1980 thru 1990

Dim o

o = app.GetGroup("@date x y", "1980 1990", NATypeAsExcelNA)

Dim rows, cols As Integer

rows = UBound(o, 1) – LBound(o, 1) + 1 'number of rows in returned object

cols = UBound(o, 2) – LBound(o, 2) + 1 'number of columns in returned object

Dim wsht as Worksheet

Set wsht = ActiveSheet

Dim rng

Set rng = wsht.Range(wsht.Cells(1, 1), wsht.Cells(rows, cols))

rng.Value = o 'puts data into top left corner of sheet

Note: The implicit series "@date" can be included in the list of series names to add a column of date

labels to the results.

Application.GetGroupEx(seriesNames, sampleString, naType, naString, groupOptions)
Similar to GetGroup, but allows you to specify a groupOptions string that is a comma-delimited list of

options. Valid options include:

badname – If a specified object name does not exist in the current workfile, this option will

control how EViews will respond. badname=error is the default behavior and EViews

will return an error on the first object name that doesn't exist. badname=pad returns aa

empty column padded with naType for each object name that is not found.

transpose – this option will transpose the 2 dimensional array of data before returning.

VB.NET Example – Retrieve all series object x1, x2, and x3, even if they don't exist in the current workfile, and transpose:

Dim o as Object = app.GetGroupEx("x1 x2 x3", , , , "badname=pad,transpose")

Application.Put(objectName, objectData, dataType, writeType)
Puts data into an existing or new object in the current workfile. objectData must be in a format that is

compatible with the destination object type (if it already exists). For example, if writing to a matrix

object, objectData must be a 2 dimensional numeric (an Excel range can also be used as the objectData

value). dataType is an optional parameter to manually specify how to read the objectData value (Scalar,

Series, Vector, Matrix, etc.). writeType is an optional parameter to specify how to update any pre-

existing object with the new data:

WriteProtect – If an object already exists with the same name, cancel the Put operation.

WriteMerge – Push the source value only if it's not NA. Values outside of source range are left

alone.

WriteMergePreferDestination – Push the source value only if the destination value is NA.

Values outside of source range are left alone.

WriteUpdate – (default) Always push the source value (regardless of NA). Values outside of

source range are left alone. For series objects, source range is considered the current sample

window.

WriteOverwrite – Always push the source value (regardless of NA). Values outside of source

range are changed to NA.

If not specified, writeType defaults to WriteUpdate.

VB.NET Example – Update series "x" with new values:

Dim val() as Double = {1.2, 2.3, 3.4, 4.5}

app.Put("x", val, EViews.DataType.DataTypeAuto, EViews.WriteType.WriteMerge)

VB.NET Example – Create matrix "m" as a 2x2 matrix:

Dim mat(,) as Double = {{1,0}, {0,1}}

app.Put("m", mat, EViews.DataType.DataTypeMatrix,

EViews.WriteType.WriteOverwrite)

Excel VBA Example – Create an alpha series "s" based on the cell values located in specified Excel Range:

Dim rng As Range

Set rng = Worksheets(1).Range("D1:D10")

app.Put "s", rng, DataTypeSeriesAlpha

Note: DataTypeAuto inspects objectData and defaults to a series object if the dataObject is a 1-

dimensional array. Otherwise, it defaults to scalar (for non-arrays) or matrix (for 2 dimensional arrays).

For new objects, the first 100 values of the array are inspected to determine if it is numeric or a string.

Application.PutSeries(seriesName, seriesData, sampleString, seriesType, writeType)
Puts data into an existing or new series object in the current workfile. seriesData must be a 1-

dimensional array of values. sampleString can be a named sample or a custom sample string which will

be used to filter the updates to only those rows that fall in the specified sample. seriesType is an

optional parameter to manually specify how to read the seriesData values (Series or Alpha). writeType

is an optional parameter to specify how to update any pre-existing object with the new data (see

Application.Put for description of different WriteTypes).

VB.NET Example – Update series "x" whose rows fall in the named sample "Sample1" with new values:

Dim val() as Double = {1.2, 2.3}

app.PutSeries("x", val, "sample1", EViews.SeriesType.SeriesTypeAuto,

EViews.WriteType.WriteMerge)

Excel VBA Example – Create an alpha series "s" based on the cell values located in specified Excel Range:

Dim rng As Range

Set rng = Worksheets(1).Range("D1:D10")

app.PutSeries "s", rng, "", SeriesTypeAlpha

Note: For new objects, SeriesTypeAuto inspects the first 100 elements in the seriesData object to

determine if the series is numeric or alpha.

Application.PutGroup(seriesNames, seriesData, sampleString, seriesType, writeType)
Similar to PutSeries, but allows writing to multiple series objects at once. The seriesNames parameter

can be a string with each name delimited by a space, an array of strings, or an Excel Range (either a row

or a column of values). seriesData must be a 2-dimensional array whose number of columns matches

the number of names specified in the first parameter. sampleString can be a named sample or a custom

sample string which will be used to filter the updates to only those rows that fall in the specified sample.

seriesType is an optional parameter to manually specify how to read the seriesData values (Series or

Alpha). writeType is an optional parameter to specify how to update any pre-existing object with the

new data (see Application.Put for description of different WriteTypes).

VB.NET Example – Update series "x" and "y" whose rows fall in the named sample "sample1" with new values:

Dim val() as Double = {{1.2, 2.3}, {4.5, 5.6}}

app.PutGroup("x y", val, "sample1")

Excel VBA Example – Create 2 series objects whose names are located in cells a1 and b1, and whose data is in a2:b11:

Dim rngHeaders as Range

Set rngHeaders = ActiveSheet.Range("a1", "b1")

Dim rngData As Range

Set rng = ActiveSheet.Range("a2:b11")

app.PutGroup rngHeaders, rngData

Choosing an EViews Version
On systems that have multiple versions of EViews installed, the choice of which version to instantiate

and use is mainly controlled by which version of the EViews Type Library is referenced in your project

(assuming you create the Manager object as in our examples above -- see EViews Manager).

Since COM Automation was introduced in EViews 7, only those versions 7 and above are relevant for

this discussion. Each subsequent version of EViews was released with a different type library name,

Manager Prog ID, and Application Interface:

Version Type Library Name Manager Prog ID Application Interface

EViews 7 EViews 1.0 Type Library EViews.Manager.1 IApplication

EViews 8 EViews 8.0 Type Library EViews.Manager.8 IApplication8

EViews 9 EViews 9.0 Type Library EViews.Manager.9 IApplication9

If your program uses the “EViews 1.0 Type Library”, it will normally only use EViews 7. Likewise, if you

reference the 8.0 Type Library, it will only use EViews 8 (again, this is assuming you create the Manager

object as in our examples above – see EViews Manager).

Using the Latest Version of EViews
If you want your program to use whichever version of EViews was last installed/registered, you can do

this by using the base “EViews 1.0 Type Library”, but changing the way the Manager object is created:

VB.NET Example – Using CreateObject to pick the latest version of EViews that was registered:

 Dim mgr As EViews.Manager = CreateObject("EViews.Manager")
 Dim app As EViews.Application = mgr.GetApplication()
 app.Show()

Excel VBA Example – Using CreateObject to pick the latest version of EViews that was registered:

Dim mgr As EViews.Manager

Set mgr = CreateObject("EViews.Manager")

Dim app As EViews.Application

Set app = mgr.GetApplication()

app.Show

By using CreateObject and the “EViews.Manager” Prog ID, you are asking Windows to pick which specific

version of the Manager object to use. Whenever EViews registers itself, it becomes the primary version,

even if newer versions exist on the same system. This means that on a system with EViews 7, 8, and 9

installed together, whichever version was last registered (via REGCOMPONENTS) will be the primary.

Checking for Newer Versions of EViews Dynamically
Using the “EViews 1.0 Type Library” as your base ensures that whichever version of the EViews Manager

object is brought back by CreateObject, you will be able to use the subsequent Application object (since

all newer versions of the EViews Application object supports the 1.0 type library). However, this will

limit you to only using those Application methods that were originally defined for EViews 7. EViews 8

Application methods (such as Get2D and GetSeries2D) will not be accessible. To work around this, you

must change the base library to “EViews 8.0 Type Library” (or newer) to get access to the newer

IApplication8 interface.

When using the “EViews 8.0 Type Library”, a variable declared as “EViews.Application” is automatically

mapped to the newer “EViews.IApplication8” interface (in Visual Studio and VBA). But because

CreateObject can return an EViews 7 Manager object, we’ll have to explicitly use the older IApplication

interface to receive the Application object. Once received, we can query the object for the newer

IApplication8 interface (using TypeOf) to see if it comes from an EViews 8 instance and thus support the

newer methods.

VB.NET Example – using “EViews 8.0 Type Library” as the base library:

 Dim mgr As EViews.Manager = CreateObject("EViews.Manager")
 Dim app7 As EViews.IApplication = mgr.GetApplication
 app7.Show()
 If TypeOf app7 Is EViews.IApplication8 Then
 Dim app8 As EViews.IApplication8 = app7
 app8.Run("create u 10")
 app8.Run("series x=rnd")
 Dim x = app8.Get2D("x")
 app8 = Nothing
 Else
 MsgBox("Must be EViews 7")

 End If
 app7 = Nothing
 mgr = Nothing

Excel VBA Example – using “EViews 8.0 Type Library” as the base library:

Dim mgr As EViews.Manager

Set mgr = CreateObject("EViews.Manager")

Dim app7 As EViews.IApplication

Set app7 = mgr.GetApplication()

app7.Show

If TypeOf app7 Is EViews.IApplication8 Then

 Dim app8 As EViews.IApplication8

 Set app8 = app7

 app8.Run "create u 10"

 app8.Run "series x = rnd"

 Dim x

 x = app8.Get2D("x")

 Set app8 = Nothing

Else

 MsgBox "Must be EViews 7"

End If

Set app7 = Nothing

Set mgr = Nothing

Using a Specific Version of EViews Dynamically
CreateObject can also be used to ask for a specific version of EViews directly. Instead of using the

generic “EViews.Manager” Prog ID, you can use the version specific Prog ID (e.g. “EViews.Manager.8”):

VB.NET Example:

 Dim mgr8 As EViews.Manager = CreateObject("EViews.Manager.8")
 Dim app As EViews.Application = mgr8.GetApplication()
 app.Show()

Excel VBA Example:

Dim mgr8 As EViews.Manager

Set mgr8 = CreateObject("EViews.Manager.8")

Dim app As EViews.Application

Set app = mgr8.GetApplication()

app.Show

Special Licensing Notes on 32-bit to 64-bit
The use of EViews COM Automation across different “bit” lines is supported. This means a 32-bit COM

client can use 64-bit EViews COM Automation and vice-versa. However, due to the way Windows

implements this, this results in a licensing restriction that can be limiting depending on your EViews

license and your scenario.

When a program uses a COM object across “bit” lines, Windows supports this by using Distributed COM

technology (DCOM). DCOM is primarily used in scenarios where a COM object installed on a remote

server can be used just as if it was installed locally.

We currently restrict DCOM use of EViews Automation to a single instance of EViews. This means if you

write a 32-bit program to control 64-bit EViews (or vice-versa), you will only be able to run one instance

of your program at a time.

You can avoid this restriction by either installing both 32-bit and 64-bit EViews onto your target system

(both can be installed on the same system using the same serial – only available with EViews 8 and

above), or compile your program to be the same “bitness” as the installed version of EViews (script

users should run their script using the proper 32-bit or 64-bit script engine).

Excel Example (Read with Error Handling):
The following sample code defines an Excel VBA macro that can be used to load all series objects found

in a specific worksheet. This also shows an example of basic error handling to display any errors that are

reported by EViews. To use this macro, create a blank worksheet in Excel, add a reference to "EViews

x.0 Type Library", create the following macro in a Module file, and then run it to see it in action. Be sure

to change the hard-coded values before running the macro to your specific workfile:

Public Sub GetWorkfile()

 On Error GoTo ErrorHandler

 'hard coded values

 Dim lsPath As String

 lsPath = "c:\mywork.wf1" 'hard coded to read from mywork.wf1

 Dim liStartColumn As Integer

 liStartColumn = 1 'put the first object in column 1

 Dim liHeaderRow As Integer

 liHeaderRow = 1 'put the column header in row 1, data after that

 Dim wsht As Worksheet

 Set wsht = ActiveSheet 'output to the current activesheet

 'open connection to EViews

 Dim mgr As New EViews.Manager

 Dim app As EViews.Application

 Set app = mgr.GetApplication(ExistingOrNew)

 'open the workfile

 app.Run "wfopen " & lsPath

 'get the column headers

 Dim columnHeaders

 columnHeaders = app.Lookup("*", "series", LookupReturnMatrixAsColumns)

 'display the column headers

 Dim colcnt As Integer

 'columns are in 2nd dimension

 colcnt = UBound(columnHeaders, 2) - LBound(columnHeaders, 2) + 1

 Dim rng As Range

 Set rng = wsht.Range(wsht.Cells(liHeaderRow, liStartColumn),

wsht.Cells(liHeaderRow, liStartColumn + colcnt - 1))

 rng.Value = columnHeaders

 'now get the data...

 Dim seriesData

 seriesData = app.GetGroup(columnHeaders, "@all")

 'display the data

 Dim rowcnt As Integer

 'rows are in 1st dimension

 rowcnt = UBound(seriesData, 1) - LBound(seriesData, 1) + 1

 Set rng = wsht.Range(wsht.Cells(liHeaderRow + 1, liStartColumn),

wsht.Cells(liHeaderRow + rowcnt, liStartColumn + colcnt - 1))

 rng.Value = seriesData

ExitHandler:

 On Error Resume Next

 Set app = Nothing

 Set mgr = Nothing

 Exit Sub

ErrorHandler:

 Dim ret As VbMsgBoxResult

 ret = MsgBox(Err.Description, vbAbortRetryIgnore Or vbCritical, "EViews

Error")

 Select Case ret

 Case vbAbort:

 Resume ExitHandler

 Case vbRetry:

 Resume

 Case vbIgnore:

 Resume Next

 End Select

 Resume ExitHandler

End Sub

Excel Example (Write with Error Handling):
The following sample code defines an Excel VBA macro that does the opposite of the previous Read

example. It will push all the data from specific columns from the spreadsheet into a new workfile in

EViews and then save it. To use this macro, copy this code into your Excel spreadsheet, and change the

hard coded values in the function to point to your specific header and data range:

Public Sub SaveToWorkfile()

 On Error GoTo ErrorHandler

 'hard coded values

 Dim lsPath As String

 lsPath = "c:\mywork2.wf1" 'hard coded to write to mywork2.wf1

 Dim liStartColumn As Integer

 liStartColumn = 1 'column 1 has the first column of data

 Dim liHeaderRow As Integer

 liHeaderRow = 1 'column headers are on row 1, with the data after that

 Dim liColCount As Integer

 liColCount = 15 'number of columns of data to push from excel worksheet

 Dim liRowCount As Integer

 liRowCount = 92 'number of rows to push from excel worksheet

 Dim wsht As Worksheet

 Set wsht = ActiveSheet 'read from the current activesheet

 'open connection to EViews

 Dim mgr As New EViews.Manager

 Dim app As EViews.Application

 Set app = mgr.GetApplication(ExistingOrNew)

 'show the EViews window

 app.Show

 'creates a new undated workfile with the correct number of observations

 app.Run "create u " & CStr(liRowCount)

 'get the column header range

 Dim rngHeaders As Range

 Set rngHeaders = wsht.Range(wsht.Cells(liHeaderRow, liStartColumn),

wsht.Cells(liHeaderRow, liStartColumn + liColCount - 1))

 'get the data range

 Dim rngData As Range

 Set rngData = wsht.Range(wsht.Cells(liHeaderRow + 1, liStartColumn),

wsht.Cells(liHeaderRow + liRowCount, liStartColumn + liColCount - 1))

 'now push to EViews as Series objects

 app.PutGroup rngHeaders, rngData

 'now save the new workfile

 app.Run "wfsave " & lsPath

ExitHandler:

 On Error Resume Next

 Set app = Nothing

 Set mgr = Nothing

 Exit Sub

ErrorHandler:

 Dim ret As VbMsgBoxResult

 ret = MsgBox(Err.Description, vbAbortRetryIgnore Or vbCritical, "EViews

Error")

 Select Case ret

 Case vbAbort:

 Resume ExitHandler

 Case vbRetry:

 Resume

 Case vbIgnore:

 Resume Next

 End Select

 Resume ExitHandler

End Sub

