
EViews Database Objects Library

Overview
The EViews Database Objects (EDO) Library gives you the ability to access data objects held inside

EViews databases and workfiles from within an external application.

The library consists of a set of COM objects exported by EViews that can easily be used in a variety of

development environments such as Microsoft .NET and Visual Basic for Applications (VBA).

The API provides full read and write access to EViews databases, as well as read-only access to EViews

workfiles. The interface provides access to both the observation values and the attributes of an object.

Note that the EViews OLE DB interface also provides access to data within EViews file formats but does

not support any write operations and does not support object attributes.

The interface is related to the EViews Database Extension (EDX) API because the main objects in the

EViews Database Objects (EDO) Library follow interfaces defined by the EDX API. However, the usage

scenario for the two features is quite different. The EDX API allows you to connect EViews to an external

data source by implementing your own Database Manager and Database classes. The EDO library allows

you to work with data currently stored within EViews file formats in an application other than EViews by

using Database Manager and Database objects from a library already implemented by EViews.

The EDO library supports reading and writing of the following EViews data objects:

- Numeric series (including series containing dates)

- Alpha series (containing character data)

- Scalars

- Vectors

- Matrices

- Strings

- String Vectors

The library does not currently support access to data within structured EViews objects such as equations

or models.

The EViews Database Objects Library consists of three classes:

- EViewsDatabaseManager: The manager class is the entry point for all database activity. The

manager should be constructed once during the session. The main task of the manager is to

return a new EViewsDatabase object whenever a particular database or workfile is opened.

- EViewsDatabase: The database class represents a currently open EViews database or workfile.

The main tasks of the database class are to read objects, write objects, and search through

objects within the database.

- Frequency: The frequency class is a utility class that exports functionality available inside of

EViews for working with calendar dates and frequencies. Use of the Frequency class is optional –

it is not an argument to any function in the database manager or database classes.

The EViewsDatabaseManager and EViewsDatabase classes implement interfaces defined in the EViews

Database Extension (EDX) API. Please see the EDX API documentation for a more detailed discussion of

the functions within these interfaces and for full documentation of the Frequency class.

Simple examples
In this section we provide some simple code fragments for common operations.

Opening a database or workfile
To open a database or workfile you must first create an EViewsDatabaseManager class and then call the

OpenDb() function provided by the database manager to open the database.

 Dim dbPath = "C:\mydir\mydb.edb"

 Dim dbMgr = New EViewsEdx.EViewsDatabaseManager

 Dim db = dbMgr.OpenDb(dbPath, EViewsEdx.OpenCreateMode.FileOpen,

EViewsEdx.ReadWriteMode.FileReadOnly, "", "", "")

 'add code for operations on database here…

 db.Close()

 dbMgr.Close()

You should construct only one database manager per session. Note that the Database Objects Library is

not currently thread safe, even if you construct a separate DatabaseManager within each thread.

Reading an object

To retrieve an EViews data object from a database or workfile simply call the ReadObject() function on

the database class.

 Dim attr = Nothing

 Dim vals = Nothing

 Dim ids = Nothing

 db.ReadObject("myseries", "", attr, vals, ids)

The first argument to the function is the name of the object you would like to retrieve. The second

argument is the destination frequency, which is irrelevant for EViews databases and workfiles since only

a single frequency of data can be stored with each object name.

Data from the object is returned in the three arguments attr, vals, and ids. Attr will contain a table of

attribute names and values, such as ‘freq’ for frequency, ‘start’ for start date and ‘end’ for end date as

well as any custom attributes the user has added to the object. Names will be listed in the first column

of the attribute array and values in the second column. Vals will contain an array of observation values.

In most cases this will be a one dimensional array, except for matrices which will contain a two-

dimensional array. The array may consist of either numeric, string or date values depending on the type

of the object.

The ids array is only returned for series objects. It contains the start date of each observation of the

series. The ids array will have the same number of elements as the vals array.

Writing an object
To write an object into an EViews database use the WriteObject() function. The WriteObject function

supports a variety of different input formats depending on what object you are trying to write.

To write a time series, you can either provide explicit frequency and start date attributes:

 'explicit frequency and start date (no date identifiers)

 Dim attr As String = "freq=Q, start=2010Q1"

 Dim vals = New Double(0 To 3) {1.0, 2.0, 3.0, 4.0}

 db.WriteObject("myseries", attr, vals, Nothing,

EViewsEdx.WriteType.WriteOverwrite)

Or you can provide an array of observation dates for each data value and let EViews automatically

determine the frequency:

 'frequency, start and end date automatically determined from date ids

 Dim vals = New Double(0 To 3) {1.0, 2.0, 3.0, 4.0}

 Dim ids = New Date(0 To 3) {#3/31/2010#, #6/30/2010#, #9/30/2010#,

#12/31/2010#}

 db.WriteObject("myseries", Nothing, vals, ids,

EViewsEdx.WriteType.WriteOverwrite)

To write a matrix, set the ‘type’ attribute with value ‘matrix’ and pass in a two dimensional array of
values:

 '4 by 2 matrix passed as array

 Dim attr As String = "type=matrix"

 Dim vals = New Double(0 To 3, 0 To 1) {{1, 2}, {3, 4}, {5, 6}, {7, 8}}

db.WriteObject("mymatrix", attr, vals, Nothing,

EViewsEdx.WriteType.WriteOverwrite)

Or pass in a one dimensional array of values and specify the dimensions using the ‘rows’ and ‘cols’

attributes.

 '4 by 2 matrix described using rows/cols

 Dim attr As String = "type=matrix, rows=4, cols=2"

 Dim vals = New Double(0 To 7) {1, 2, 3, 4, 5, 6, 7, 8}

db.WriteObject("newname", attr, vals, Nothing,

EViewsEdx.WriteType.WriteOverwrite)

String vectors can be passed in using an array of strings:

 'write a string vector

 Dim attr As String = "type=svector"

 Dim vals = New String(0 To 4) {"here", "are", "some", "string", "values"}

 db.WriteObject("newname", attr, vals, Nothing,

EViewsEdx.WriteType.WriteOverwrite)

Scalar and string objects can be written using simple in line values:

 db.WriteObject("myscalar", "type=scalar", 100.0, Nothing,

EViewsEdx.WriteType.WriteOverwrite)

 db.WriteObject("mystring", "type=string", "hello EViews!", Nothing,

EViewsEdx.WriteType.WriteOverwrite)

Note that the only overwrite options supported by EViews databases are WriteOverwrite, which will

overwrite any existing object with the same name, and WriteProtect, which will throw a

RECORD_NAME_IN_USE exception whenever there is an existing object with the same name.

Searching for objects
To obtain a list of objects within the database or workfile that satisfy specified criteria, first call

SearchInitialize() to begin the search, then call SearchNext() repeatedly to retrieve results for each

object one at a time.

A typical example might look like this:

 'initialize search
 db.SearchByAttributes("name matches abc*", "name, type")

 'retrieve results
 Dim name As String = Nothing
 Dim attr As Object = Nothing
 While (db.SearchNext(name, attr))
 'add code to process each item here...
 End While

The searchExpression argument of SearchByAttributes allows you to specify a criterion to select which

objects you would like to return based on their attributes, for example:

 “freq=m and start<1970”

will select all monthly series that have history available before 1970.

The attrNames arguments selects which attributes you would like to be returned from each object that

matches the search criterion. Attribute names should be separated by commas.

Attributes will be returned by SearchNext() in a two dimensional array with attribute names in the first

column and attribute values in the second column.

Managing objects
Objects inside EViews databases can be copied, renamed and deleted using the functions CopyObject,

RenameObject and DeleteObject. You may use wildcards within the object names (‘?’ for a single

unknown character and ‘*’ for zero or more unknown characters) to copy, rename or delete several

objects at once.

Attempts to copy, rename or delete an object that doesn’t exist will cause a RECORD_NAME_INVALID

exception to be thrown.

Attempts to copy or rename an object to a name that is already in use by another object will cause a

RECORD_NAME_IN_USE exception to be thrown. The following code fragment shows an example of

copying an object where the user will be asked whether it is OK to overwrite the existing object.

Dim errorCode As EViewsEdx.ErrorCode = 0

Try

 'try copy without overwrite

 db.CopyObject(OldName, NewName, False)

Catch errorInfo As COMException

 errorCode = errorInfo.ErrorCode

 If (errorCode <> EViewsEdx.ErrorCode.RECORD_NAME_IN_USE) Then

 ProcessComError(errorInfo)

 End If

 Exit Try

End Try

'if existing object found, prompt for whether to overwrite

If (errorCode = EViewsEdx.ErrorCode.RECORD_NAME_IN_USE) Then

 If (MsgBox("Object " & NewName & " already exists. Overwrite the existing

object?", MsgBoxStyle.OkCancel) = MsgBoxResult.Ok) Then

 Try

 'user has confirmed overwrite, so try copy with overwrite

 db.CopyObject(OldName, NewName, True)

 Catch errorInfo As COMException

 ProcessComError(errorInfo)

 Exit Try

 End Try

 End If

End If

Handling errors
Most errors that occur inside the Database Objects Library are handled by throwing exceptions. These

exceptions will appear within the .Net environment as System.Runtime.InteropServices.COMException

objects.

For robust error handling, your application should wrap each call to a function within the EDO library

inside a try/catch block as follows:

 Try

'call function in EDO library

 db.DeleteObject("myseries")

 Catch errorInfo As COMException

'handle any errors here…

 Exit Try

 End Try

The COMException class contains an ErrorCode member. The value of this member can be compared to

values in the EViewsEdx.ErrorCode enumeration to add handling for a specific cause of error within your

code.

The COMException class also contains a Message member. This contains a human readable description

of the error that occurred. This text should normally be displayed to the user in all cases where you are

not specifically handling the error.

Sample Application
The sample project EdoSample available on the EViews web site contains complete source code for a

simple application which demonstrates many aspects of the EViews Data Objects library.

The application opens with a form that lets the user select an EViews database or workfile to open. You

may then search for objects within the database or workfile by specifying a name pattern:

If you have chosen to open a database, you can use the Rename, Copy and Delete buttons to rename,

copy and delete selected objects within the database. EViews workfiles do not support these functions

since the workfile file format does not support partial changes to the workfile content.

This form is implemented in the code file DatabaseForm.vb. The class creates an

EViewsDatabaseManager object when the application is launched and holds an EViewsDatabase object

for the database that is currently open. All operations on the database are performed within the code of

DatabaseForm.

By double clicking on an object you can display the values and attributes of the selected object:

The object display form is implemented in the code file ObjectForm.vb. ObjectForm works entirely with

a copy of the attributes and the observations of the object held in memory so it does not directly make

use of the EViewsDatabaseManager or EViewsDatabase classes. The code for this class does provide

several examples of using the Frequency utility class to move between observation numbers and date

values and to format dates for display.

The complete source code for the application is available on our web site. You may find it useful to step

through the application to see how various operations have been implemented.

