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Abstract

The paper sets out a method for handling sign restrictions in sys-
tems of simultaneous equations which are only partially identified.
These sign restrictions might apply to either structural equation pa-
rameters or functions of them such as impulse responses. Initially a
range of values for the unidentified parameters are generated and then
the role of sign restrictions is to narrow the range. It is simple to apply
and can be handled in packages such as EViews and Stata. Examples
are given of how to implement it in a number of cases where there are
both parametric and sign restrictions.

1 Introduction

Consider a system of n structural equations in an n × 1 vector of variables
yt with p lags. This will be written as

A0yt = A1yt−1 + ...+Apyt−p +B0ηt, (1)
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where ηt is a n × 1 vector of shocks taken to be N(0, In), while εt = B0ηt
will contain the structural equation shocks. Exogenous variables can be sub-
sumed into yt by appropriate definitions of A0 and B0. In the traditional
simultaneous equations format estimation of the unknown parameters was
done by imposing zero restrictions on the Aj . In the exactly-identified Struc-
tural Vector Autoregression (SVAR) case A1, .., Ap were left unconstrained
and restrictions were imposed on A0 and B0. Defining A = A0 and B = B0
one gets the form of SVARs pioneered by Amisano and Giannini (1997) and
used in programs such as EViews and Stata. We refer to this as the (A,B)
technology and will use it extensively in this paper.

In most structural model applications A0 has been taken to have unity
on its diagonal (reflecting a normalization) and B0 to be a diagonal matrix
containing the standard deviations of the shocks. In such a form there are n2

unknown elements in A0 and B0. Accordingly, to estimate these parameters
requires some moment conditions. n(n+1)

2
of these are available using the

fact that the shocks εt = B0ηt are uncorrelated. This leaves n2 − n(n+1)
2

=
n(n−1)
2

"free" parameters whose values need to be found by some method.

Arranging these parameters in a n(n−1)
2

× 1 vector β, this vector is estimated

in SVAR work by imposing n(n−1)
2

restrictions on A0, e.g. Sims (1980) made
A0 triangular.

There have of course been other suggestions for setting these n(n−1)
2

re-
strictions. One of these involving A0 and the Aj (j > 0) is the long-run
restriction employed by Blanchard and Quah (1999). However, in many
instances one might only have K plausible parametric restrictions, where
K <

n(n−1)
2

. In those situations it is only possible to estimate K of the un-

known parameters, leaving n(n−1)
2

−K that are unidentified. Consequently,
β might be divided into a K × 1 vector β1 of estimable parameters leaving
β2 to capture the remainder, namely those that are unidentified.

In this paper we suggest that values for the parameters β2 be generated
by some procedure, following which β1 can be estimated. This will be done
conditional upon the generated values of β2 and by using the K restrictions
on Aj. Clearly β1 will not be unique and there will be a range of values for
it. To discriminate between these one might use some extra information. A
popular example of this - often described as "agnostic" - has been the use of
sign information. This might come directly from the β1 and β2 parameters
themselves but mostly it has been about some functions of them, such as
impulse responses. This will narrow the range, although it will rarely make
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it possible to get a unique set of values for β1. Nevertheless sign restrictions
on impulse responses in SVARs have become a very popular way of doing
emprical work. They do not provide a single set of impulse responses but a
range of possible outcomes. There are many applications of this methodology,
e.g. Canova and De Nicoló (2002), Elekdag and Han (2015), Faust (1998),
Jääskelä and Jennings (2011), Uhlig (2005), Mumtaz and Zanetti (2012), and
Stângă (2014).

Section 2 sets out our method for finding a range of values for β1 and β2
(and hence statistics that might be constructed from them) in the context
of a simple demand and supply system that we term the market model. In
Section 3 the ideas are applied to larger systems, along with a number of types
of parametric restrictions, i.e. K �= 0. Our strategy will be to formulate the
system so as to be able to use the (A,B) technology. Some of the parameters
in Aj, B0 can be estimated using parametric restrictions, namely β1, but
there will be others that cannot (β2), and we therefore propose that they
be generated by some mechanism. The use of the (A,B) technology means
that our method can mostly be implemented with programs such as EViews
and Stata, hence justifying the "simple" descriptor in the title of the paper.
Our method will be designated as SRC - sign restrictions with generated
coefficients.

Section 4 considers how our method relates to the sign restriction ap-
proach used in the SVAR literature. This was begun by Faust (1998), Canova
and De Nicoló (2002) and Uhlig (2005), but has recently been given a general
treatment in Arias et al. (2014). Because the examples of Section 3 mostly
involved signs of impulse responses, we can ask what the advantage of our
method would be over the method proposed in Arias et al. It is argued that
our method is relatively easy to implement because of its use of existing soft-
ware such as EViews and Stata; it can be applied in a wider context than
SVARs; and is possibly more transparent, which is useful for teaching and
communication. Lastly, Section 5 concludes. In it we note that, although our
focus has been upon SVARs, the method we advocate can be applied equally
well to any context which involves a simultaneous equation set-up. Since
microeconomic studies often have this structure it therefore has potential
application in that work as well.
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2 The SRCmethod in a simple demand/supply

context

Suppose we had the classic demand and supply model in (2)-(3) where the
shocks εjt are uncorrelated with standard deviations σj. This will be termed
the market model.

qt = αpt + ε1t (2)

qt = δpt + ε2t. (3)

In terms of the system of the introduction A0 =

[
1 −α
1 −δ

]
, B0 =

[
σ1 0
0 σ2

]

and Aj = 0 (j > 0). Since n = 2 there are n2 = 4 unknown parameters -
α, δ, σ1 and σ2. The restriction that the shocks are uncorrelated produces
three moment condition E(ε21t) = σ21, E(ε

2
2t) = σ22 and E(ε1tε2t) = 0. These

would enable the estimation of n(n+1)
2

= 3 parameters. Assuming that two
of these are σ1 and σ2 means that it is only possible to estimate one of the
remaining two coefficients α and δ.

A single parametric restriction (K = 1) such as α = 0 would enable
the estimation of δ by OLS. Suppose however that this is not a plausible
restriction and that there are no others. ThenK = 0. Some extra information
is available however, namely that the signs of α and δ must be opposite, if one
of the equations is to be a demand and the other a supply curve. Therefore
our method to exploit this sign information would be to proceed as follows.

(i) Generate some value for α (this is the equivalent of β2 in the introduction)
and call it α∗.

(ii) Then, with α = α∗, apply MLE to (2) and (3) to estimate δ, σ1, σ2
(these parameters are the equivalent of β1).

There is an alternative approach to getting the ML estimate of δ that is
instructive. Because the system is exactly identified, once α is fixed at α∗ the
MLE of δ∗ is identical to the instrumental variable estimator of δ using the
instrument (qt−α∗pt) for pt in (3) (see Durbin (1954) and Hausman(1975)).1

1Note that the IV estimator is found using the moment condition E(ε1tε2t) = 0 and so
enforces uncorrelated shocks. The MLE uses this restriction when setting up the likelihood.
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Clearly, for every α∗ value we get a δ∗ estimate, so there will be a range
of values for the pairs (α∗, δ∗). Some of these pairs can be rejected, namely
those that have the same signs. Consequently, this is how the sign restric-
tion information is to be used, i.e. first produce a range of values for the
coefficients α, δ that are compatible with uncorrelated shocks, followed by
rejection of some of these based on their signs. If one wishes to narrow this
range even further then extra information of some sort would be needed, e.g.
one might think that the price elasticities for supply and demand should not
exceed certain values. There is nothing in what we propose that stops the
use of such information, since it occurs after estimation is done by MLE.
One would simply reject those values that lie outside the postulated range
as well as those with incorrect signs. It is convenient however if we just give
the generic description to the type of information to be used to narrow the
range as "sign information".

Now if there were dynamics in the equations above and nothing is known
about the coefficients on the dynamics, i.e. Aj (j > 0) is unrestricted, then
one might work with functions of A0 and A1. A particular function would
be impulse responses. For the static system of (2) and (3) the response of
qt to a unit shock in ε2t is

α
α−δ

, i.e. once α and δ values are found impulse
responses can be computed.2 Sign information might be available on this
impulse response. Table 1 gives what would be the most likely responses
of prices and quantity to positive demand and cost shocks in the market
model.3 Clearly we can use α∗, δ∗ to compute a range of impulse responses
whose signs can be compared to those in Table 1. This enables us to identify
which of ε1t and ε2t is the demand and which is the cost shock. Of course
it is possible that there are no shocks with impulse responses of the correct
sign, in which case we would reject those values of α∗ and β∗, just as was
done when the information pertained to the signs of the coefficients.

2Of course if there were dynamics in the market model A1 would be computed and the
impulse responses would be formed from it as well as α and δ. But this poses no difficulties
for MLE, and is standard in programs such as EViews, provided there are no restrictions
on A1.

3One has to allow for the fact that shocks could be negative rather than positive or
one might be negative and the other positive. In those situations the sign patterns are
clearly different to what is in Table 1. This was discussed in Fry and Pagan (2011) and we
just take that as given here, always referring to the signs of impulse responses for positive
shocks. In empirical work when deciding on whether a particular set of impulse responses
is accepted we take into account the need to examine all combinations of the type of shock.
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TABLE 1

Sign restrictions for the market model
(positive demand/supply (productivity) shocks)

Variable\shock Demand Supply
qt + +
pt + -

This leaves the question of how α∗. is to be generated? Basically we need a
mechanism for ensuring that the space of values for α is sampled as effectively
as possible. This is in order to find all the values of δ that are compatible
with those values of α, and which also satisfy the constraint of uncorrelated
shocks. In the event that α > 0 we would generate a θ from a uniform (0,1)
(U(0,1)) density and then write α = θ

(1−abs(θ))
. The same formula is used if

the sign of α is unknown, but now θ will be drawn from a U(-1,1) density.
This latter case arises when the sign restrictions are on impulse responses
rather than the structural coefficients. Of course there may be other ways of
generating α, such as from some uniform density over (0,G) or (−G,G), but
we would need to specify a value for G. It should be clear that, given a set
of data, δ̂ is a function of α, and so the density of δ̂ across models will be
a function of how α is generated. Thus something like the median of δ̂ will
be affected. The range of δ̂ however is more dependent on how complete the
sampling of the space of α is.

Once a value of θ is generated this will fix α to some value α∗. It is
clear then why we call our method SRC, as some parameters (α here but
β2 more generally) are generated, the remaining parameters are estimated,
and then sign information is used to narrow the range of outcomes for the
parameters β1 and β2. Standard errors will come from the method used for
estimation. These will be conditioned upon a particular draw of α∗ which,
along with δ̂(α∗), will be described as producing a model. Although programs
which use the (A,B) technology generally use ML for estimation it could
be done by any method that will estimate the parameters of a structural
system. Consequently, for any given α∗ there will be a standard error for
the remaining coefficients that are estimated (δ in the market model). These
standard errors arise due to the fact that data is used to estimate some
parameters. There is also a spread in the estimates of δ which stems from
the fact that there is not a unique α∗, and so there are many models that
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are feasible (different α∗), all of which fit the data equally well, i.e. are
observationally equivalent. So that latter variation is not due to data.

3 Some examples of the SRC method

A simulated market model
Some data to work with was simulated from the following parameterized

version of the market model

qt = −pt + η1t (4)

qt = 3pt +
√
2η2t (5)

Equations (2) and (3) were then estimated with the SRC method using the
simulated data from (4) and (5). In terms of the A,B construct used in

EViews A =

[
1 −α∗
1 NA

]
, B =

[
NA 0
0 NA

]
, where NA indicates that this

term must be estimated, α∗ = θ
(1−abs(θ))

, and θ comes from a U(−1, 1) random
number generator. 500 different values for α∗ are generated, ML estimates of
the remaining parameters inA,B are found, and impulse responses produced.
So there are 500 sets of impulse responses that are to be either accepted or
rejected. In fact, 15% of these are rejected. Of the retained impulse responses
for quantity and price (with the demand shock first and costs second) we
find that the closest fit to the true values of the impulse responses among
the retained ones was4

SRC =

[
.7369 .3427
.2484 −.3605

]
, True =

[
.75 .3536
.25 −.3536

]
.

Consequently, it is clear that among the retained set of responses there is at
least one that gives a good match to the true impulse responses. Changing
the parameter values for simulating the market model data did not change
this conclusion. Of course, if more than 500 draws for α∗ are made, we would
expect that eventually the true impulse response functions would be found
among the generated ones.

4We just use a simple Euclidean norm to define the closest match to the true values.
The impulse responses are for a one standard deviation shock.
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In order to assess our method of generating α ( called the basic method)
it is worth looking at this example when the restrictions are placed on the
coefficients rather than the impulse responses. Suppose that α > 0 is assumed
and that we estimate a demand elasticity δ with the data and a generated
α∗ > 0. The two methods for generating α∗ are our basic one, where α∗ = θ

1−θ

with θ coming from a U(0,1) density, and an alternative where α∗ is generated

from a U(0,600) density. Then Table 2 gives statistics on δ̂
∗

for the cases
where there are 1000 and 500000 draws (trials) of random numbers.

TABLE 2

Comparing the δ̂
∗

for two generating methods and number of draws

Basic draws=1000 Alternative draws=1000
Median -2.3 -.21
Minimum -13.06 -6.87
Maximum -.205 -.209

Basic draws=500000 Alternative draws=500000
Median -2.4 -.22
Minimum -13.08 -13.06
Maximum -.204 -.209

It is clear that the statistics change little for our way of generating α

while the alternative needs many trials to cover the space of α, resulting in
the minimum changing quite a lot. Because δ̂ is a function of α for a given
data set, and δ̂ < 0 would be the only values retained in the draws, we
can find the value α∗ that gives the minimum value of δ̂ by just maximizing
δ̂(α∗)′δ̂(α∗). The maximum value can be found in a similar way. When this is
done we get the values of -13.07 and -.204, so this suggests that our generation
method is good at covering the α−space at minimal cost. It is worth noting
that the minimum and maximum values of δ come from different models i.e.
different values of α are involved. Thus the minimum value comes from a
model with a very inelastic supply and the maximum is from one that is
moderately elastic.

A small macro model
A second example involves a small macro model with an output gap (y1t),

inflation (y2t), and a policy interest rate (y3t). We will write this as an SVAR
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with one lag (’SVAR(1)’) in (6)-(8), although in the application it is an
SVAR(2).

y1t = a012y2t + a013y3t + a112y2t−1 + a113y3t−1 + a111y1t−1 + ε1t (6)

y2t = a021y1t + a023y3t + a122y2t−1 + a123y3t−1 + a121y1t−1 + ε2t (7)

y3t = a031y1t + a032y2t + a132y2t−1 + a133y3t−1 + a131y1t−1 + ε3t (8)

In (6)-(8) the εjt are uncorrelated and have E(εjt) = 0, with standard devia-
tions of σj . In contrast to the simulated data from the market model, actual
data on the three variables taken from Cho and Moreono (2006). Sign restric-
tions for this small macro model were also studied in Fry and Pagan (2011),
but done in a different way, and we will return to that in section 4. For
reference purposes we will take the sign restrictions on the contemporaneous
responses for positive shocks to be those in Table 3.

TABLE 3

Sign restrictions for positive macro model shocks

Variable\shock Demand Cost-push Interest rate
yt + - -
πt + + -
it + + +

To implement the SRC method we define

A0 =




1 −a012 −a013

−a021 1 −a023
−a031 −a032 1



 , A1 =




a111 a112 a113
a121 a122 a123
a131 a132 a133





B0 =




σ1 0 0
0 σ2 0
0 0 σ3



 .

In the model n = 3 so there are n(n−1)
2

= 3 restrictions that are needed if one
is to estimate the Aj matrices in a parametric way. Because it is assumed
that there are no restrictions on A1, the SRC method will proceed in the
following way
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(i) Generate ā012, ā
0
13, ā

0
23 using ā012 =

θ1
(1−abs(θ1))

, ā013 =
θ2

(1−abs(θ2))
, ā023 =

θ3
(1−abs(θ3))

.

(ii) Apply MLE with A0 containing these generated values (these are β2)
and estimate a021, a

0
31, a

0
32 (which are β1) by ML.5

(iii) Form impulse responses using the resulting estimated values of A0 and
A1, accepting or rejecting them based on the signs in Table 3.

Now in this case there are three random numbers that need to be gener-
ated - θ1, θ2 and θ3. These will be independent and will all be drawn from
U(-1,1). Again this is because we do not know which equation is the interest
rate rule etc. so do not know the signs of coefficients.

As well as the ML approach we could use instrumental variables. Once
a012, a

0
13, a

0
23 are fixed at ā012, ā

0
13, a

0
23 the system is exactly identified, so IV

and MLE are identical. The IV approach would involve the following steps:

(i) Construct ε̄1t = y1t − ā012y2t −ā013y3t.

(ii) The dependent variable of (7) will be y2t− ā023y3t. Using ε̂1t as the instru-
ment for y1t an IV estimate of â021 can be found from (7), after which
residuals ε̄2t = y2t − ā023y3t − â021y1t can be computed.

(iii) Use ε̄1t and ε̄2t as instruments for y1t and y2t in (8) to estimate the
remaining coefficients and hence complete the A0 matrix

It is worth observing here that, rather than looking at impulse responses,
one might use sign restrictions on the structural parameters, e.g. a013 <

0, a021 > 0 and a032 > 0. An even more complex restriction might be to ensure
that the Taylor principle for stability held. Consequently, there are many
types of restrictions that might be employed.

Unlike the market model with simulated data it is not easy to find impulse
responses that satisfy the sign restrictions with the small macro model. Only
around 5% of the impulse responses are retained. 1000 of these impulse
responses are plotted in Figure 1. This is to match the equivalent figure in
Fry and Pagan (2011) who used an alternative method of finding a range

5Of course the MLE must be done using a likelihood constructed so that the shocks are
uncorrelated. But this is done in the SVAR options in packages like EViews and Stata.
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of impulse responses to be discussed in Section 4.6 It is clear that there
is a large spread of values, i.e. many impulse responses can be found that
preserve the sign information and which fit the data equally well. Note that
the spread here is across models and has nothing to do with the variation
due to the actual data.

-0.2

0.0
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0.6

0.8
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1.4

    5     10     15     20     25     30   

Figure 1: 1000 Impulses Responses from SRC Satisying the Sign Restrictions
for the Small Macro Model using the Cho-Moreno Data

6In Figure 1 the positive cost shocks mean a negative productivity shock and, because,
Fry and Pagan used a positive productivity shock in their figure, an allowance needs to
be made for that when effecting a comparison.
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Combining sign and short-run parametric restrictions on the
small macro model

So far it has been assumed there are no plausible parametric restrictions.
How does SRC proceed if there are such restrictions? To answer this it is first
necessary to establish some extra notation. Thus the j periods ahead impulse
responses of the n variables to the n structural shocks εt will be defined as
Cj. For expository purposes now suppose that there is a SVAR(1). In this
case the contemporaneous responses will be C0 and others can be computed
recursively using Cj = A1Cj−1, j ≥ 1.7 This SVAR would also have a VAR
underlying it with the form yt = B1yt−1 + et, and the impulse responses to
the shocks et will be termed Dj, where Dj can be found from the recursion
Dj = B1Dj−1 (j ≥ 1), D0 = In. Restrictions might also be applied to either
Cj or

∑
∞

k=1 Ck. The first of these would be termed short-run and the second
long-run restrictions.
A zero restriction on a contemporaneous impulse response
Suppose that in the small macro model the constraint is imposed that

monetary policy has no contemporaneous impact upon the output gap. Let-
ting the elements of C0 be c0ij this restriction would be c013 = 0. The SRC
method will now work with an SVAR in which this is imposed. Just as in
previous sections, this could be done by either MLE or IV estimation, and
we now look at both approaches in this context.

First, the MLE can be found using the (A,B) technology. In this structure

A0 = In, andB0 =




b011 b012 0
b021 b022 b023
b031 b032 b033



 . It is clear that setting the (1,3) element

of B0 to zero imposes the parametric constraint, because C0 = A−10 B0 = B0.

As it stands howeverB cannot be estimated, as only a maximum of n(n+1)
2

= 6
parameters can be estimated. Hence SRC would proceed by first generating
values for b012 and b023 and then estimating the remaining elements of B0 with
MLE. After that impulse responses are found and either accepted or rejected.
Thus the parametric restriction is automatically imposed before estimation
by definition of B. Basically it is used to reduce the number of parameters
to be estimated in B by one.

The alternative is to do IV upon the system A0yt = A1yt−1 +Bηt, where
B is diagonal with the standard errors of the shocks εt(= Bηt). To do this

7There is always a recursion involving the SVAR lag coefficients for any order of the
SVAR.
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we would start with equation (8), where instruments would be needed for
y1t and y2t. Now the VAR errors ejt are linear combinations of the structural
errors εjt. Pagan and Robertson (1998) pointed out that a restriction such as
c013 = 0 meant e1t would be a combination of ε1t and ε2t alone, i.e. it would
be uncorrelated with ε3t. This means that the VAR residuals ê1t can be used
as an instrument for y1t in (8).

This points to the following strategy for estimation of the complete system
by IV methods

(i) Generate values for a032 and write the dependent variable of (8) as y3t −
ā032y2t.

(ii) Estimate the resulting (8) with ê1t as the instrument for y1t and thereby
get residuals ε̂3t = y3t−ā032y2t−â031y1t. This can be used as an instrument
in the other two equations.

(iii) Turning to (6) generate ā012, set up the new dependent variable y1t −
ā012y2t, and then estimate ā013 using ε̂3t as the instrument for y3t. Then
compute residuals ε̂2t.

(iv) Finally, estimate (7) by IV using the residuals ε̂1t and ε̂2t.

Once the two parameters are generated and the short-run restriction is
imposed, the model is exactly identified so that these IV estimates are iden-
tical to the MLE.
A one-step ahead zero restriction on an impulse response
In this elements of C1 are constrained to be zero. Now the system is set

up with A0 = I, C0 = B0 and B1 = A1, showing that

C1 = A1C0

= B1C0

= D1C0.

Because Dj can be computed from the VAR independently of any structural
form it implies that restrictions on C1 show up as linear restrictions upon the
elements of C0 = B0 = B. This is easily handled in the (A,B) technology.
Restrictions on higher order (j′th lag) impulse responses will utilize Cj =
DjC0. This result does not depend upon the expository device of making the
SVAR of first order. McKibbin et al. (1998) used this approach when they
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were trying to find an SVAR representation for a calibrated macroeconomic
model. They termed the resulting SVAR a hybrid model.

Combining sign and long-run parametric restrictions on the
small macro model

An example is given here featuring the small macro model of Section 2
but now with a permanent shock. If there is to be a permanent shock in the
system there must be at least one I(1) variable and we will assume that this
is the log level of GDP, calling it z1t.

8 In SVARs such variables appear in
differenced form, that is y1t = ∆z1t. The SVAR system is then composed of
y1t, y2t and y3t with one permanent (supply) shock in the system, plus two
transitory shocks associated with demand and an interest rate. By definition
these transitory shocks have a zero long-run effect on output, z1t. Before
imposing any long-run restrictions the SVAR(1) system would be

∆z1t = a012y2t + a013y3t + a112y2t−1 + a113y3t−1 + a111∆z1t−1 + ε1t (9)

y2t = a021∆z1t + a023y3t + a122y2t−1 + a123y3t−1 + a121∆z1t−1 + ε2t (10)

y3t = a031∆z1t + a032y2t + a132y2t−1 + a133y3t−1 + a131∆z1t−1 + ε3t. (11)

Now the two transitory shocks must have a zero long-run effect upon output,
and we take these to be those attached to (10) and (11) i.e. ε2t and ε3t.

Following Fisher et al. (2014) this restriction can be imposed on the system
(9)-(11) by using the Shapiro and Watson (1988) approach of replacing (9)
with

∆z1t = a012∆y2t + a013∆y3t + a111∆z1t−1 + ε1t. (12)

If the system (9)-(11) is written as a SVAR with matrices A0 and A1 there are
now two restrictions between the elements of A0 and A1, namely a112 = −a012
and a113 = −a013. Hence the number of parameters to be estimated has been
reduced by two through the use of the two long-run restrictions associated
with the transitory shocks. In terms of the introduction, K = 2 and therefore
it is possible to estimate n(n−1)

2
+K = 5 parameters in the system (9), (10) and

(12). In order to do this one of the unknown parameters must be generated,
e.g. a023. Once done ML estimation can be performed.9

8In Cho and Moreno the output gap was formed by regressing z1t against a constant
and a time trend and then using the residuals to measure it, so the underlying assumption
was that z1t was stationary around a deterministic trend. So here we are now taking it to
be an I(1) process with drift.

9There is a difficulty with getting EViews to do maximum likelihood as EViews does
not allow for restrictions upon the A1 matrix at the same time as enforcing uncorrelated
shocks. Estimation can be done in EViews by instrumental variables.
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To understand this better consider the IV approach. First (12) can be
estimated by using y2t−1, y3t−1 and ∆z1t−1 as instruments. Once parameter
estimates for (12) are obtained one can get residuals ε̂1t. In equation (10)
a023 can be generated, producing a value ā023, the equation can be re-arranged
with y2t − ā023y3t as dependent variable, and then estimated using ε̂1t as the
instrument for y1t. Finally, equation (11) is estimated using the residuals
ε̂1t and ε̂2t as instruments. Again, once a023 is fixed the system is exactly
identified and the IV estimator is the MLE. It is crucial to observe that,
as ā023 is varied, the long-run restrictions are always enforced by the design
of the SVAR, i.e. by using (12) as part of it. Because these parametric
(long-run) restrictions reduced the number of parameters to be estimated
by two, only one parameter needs to be prescribed in order to get all the
impulse responses. This contrasts with the three needed when all shocks
were transitory. The role of sign restrictions is then to determine which of
the two transitory shocks is demand and which is monetary policy. Because
the permanent shock does not depend in any way upon the values assigned
to a023, it is invariant to the changing values of this coefficient, and so it
remains the same. Estimating the SVAR with a permanent shock by the
SRC technique now results in 45% of the responses satisfying all the sign
restrictions, as compared to the 5% when all shocks were transitory and all
variables were I(0).

Modelling the effects of optimism shocks
Beaudry et al. (2011) investigated the role of news in fluctuations. There

are five variables in their SVAR - stock prices, a measure of TFP, consump-
tion, the real interest rate and hours worked (in this order). These will be
labelled yjt (j = 1, .., 5) in that order. All shocks are assumed to be tran-
sitory so that the series are implicitly being treated as if they are I(0). A
VAR(4) is fitted.

Now one reason for using this example is to illustrate how our method
works if only a single shock is to be identified in the system. In this case
it is that attached to the structural equation for stock prices, termed an
optimism shock in Arias et al. (2014). One parametric restriction is used,
namely that the optimism shock has a zero contemporaneous effect on TFP.
Otherwise the optimism shock is to be distinguished by using sign restriction
information. They give three possible sets of restrictions and we will look
at what they call "identification one". This says that the optimism shock
has a positive effect on stock prices (as well as a zero contemporaneous effect
on TFP). Basically the only difference between this case and the impact of
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a short-run restriction studied earlier for the small macro model is that the
new system has five variables and only one shock is to be identified, i.e. there
is only one structural equation of the form

y1t = a012y2t + a013y3t + a014y4t + a015y5t + lags+ b011η1t,

where the ηjt are uncorrelated with unit variances ( as in the introduction).
To capture the VAR equations for yjt, j = 2, .., 5 we therefore write them in
the following way

yjt = lags+ b0j1η1t +

j∑

k=2

b0jkηkt, j = 2, 3, 4, 5.

We use this form because the V AR equation errors must be allowed to be
correlated with the structural error ε1t = b011η1t, as well as between them-
selves. The coefficients b0j1 ensures the former, while the common presence
of terms like η2t ensures the latter. Finally, the parameter b21 is set to zero
to reflect the zero impact of optimism shocks on TFP. This system can then
be placed into the (A,B) technology structure by defining

A =






1 a012 a013 a014 a015
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1





, B =






b011 0 0 0 0
0 b022 0 0 0
b031 b032 b033 0 0
b041 b042 b043 b044 0
b051 b052 b053 b054 b055






Now only n(n+1)
2

= 15 parameters can be estimated in the system above, so
that three of the a01j must be generated and one can be estimated. Suppose
the latter is a012. This requires all the other a01j to be generated, thereby
producing values ā013, ā

0
14 and ā015. ML estimation can then proceed with the

(A,B) structures described above. Instrumental variables works exactly as
described with the small macro model, although in this case there is only one
equation to estimate, and that will use ā013, ā

0
14 and ā015 along with residuals

ê2t from the VAR equation for TFP as the instrument.
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4 Alternative methods for using sign infor-

mation on impulse responses

There is an existing method for using sign information on impulse responses
in order to estimate SVARs. Because this method involves recombination of
an initial set of impulse responses we will refer to it as SRR - sign restrictions
by recombination. Hence, in this section we outline what SRR does and
compare it to SRC. Fry and Pagan (2011) had a more detailed discussion
about the logic of SRR in terms of the market model.

The SRR method
The key to the SSR method is to begin with a set of impulse responses

for uncorrelated shocks that have unit variances. Given a VAR with errors
et and cov(et) = ΩR, one can form uncorrelated shocks vt = Pet, either by
a Cholesky or a singular value decomposition (SVD). For the former ΩR =
A′A, where A is a triangular matrix. Hence setting P = (A′)−1 produces
uncorrelated shocks. These can then be transformed to shocks that have unit
variances. The SVD expresses ΩR as UFU ′, where U ′U = I, UU ′ = I and F

is a diagonal matrix. Setting P = U ′ will produce uncorrelated shocks with
covariance matrix F and these can be transformed to have unit variances.
Once these unit-variance shocks are found impulse responses to them can
be computed, and this provides the initial set to be re-combined. Further
impulse responses can be found by multiplying the original set by an n × n

matrix Q that has the properties Q′Q = In and QQ′ = In. These properties
are needed so as to ensure that the shocks remain uncorrelated with unit
variances.

There have been a number of proposals about howQ should be generated.
An early one was to use Givens matrices. For the n = 2 case the Givens
matrix would be

Q =

[
cosλ − sinλ
sinλ cosλ

]
,

where λ lies between zero and π. As one uses different λ from this interval one
gets different values for Q, and hence different impulse responses. One might
use a random number generator to find a number of values for λ, drawing λ

(say) from a uniform density over 0 to π. For every generated value of λ there
will be a different model with different values for the impulse responses. All
models are observationally equivalent, in that they produce an exact fit to the
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variance of the data on zt.
10 Only those impulse responses producing shocks

that agree with the maintained sign restrictions would then be retained. A
more recent method for findingQ is described in Rubio-Ramirez et al. (2010),
who use a simulation method for constructing a Q that has the requisite
properties.

The Givens approach gets more complex when n > 2. In this case there
are a number of Givens matrices, e.g. if n = 3 the matrix

Q12 =




cos λ − sinλ 0
sinλ cosλ 0
0 0 1



 ,

satisfies the necessary conditions. However, it is not unique, as there are two
other matrices Q13, Q23 formed by moving the rows of Q12 around to other
positions given by the subscripts. Those using the Givens approach have
taken the Qij to depend upon separate parameters λk (k = 1, .., n) and then
have worked with a product form like

QG(λ) = Q12(λ1)×Q13(λ2)×Q23(λ3).

Because the matrixQG above depends upon three different λk one could draw
each λk from a U(0,π) density function. As n grows the simulation approach
in Rubio-Ramirez et al. (2010) is probably more computationally efficient.

Now, as was discussed earlier, the Q above cannot be used if there are
either short-run or long-run parametric restrictions on the SVAR as well
as sign restrictions on impulses. Ariel et al. (2014) have recently given
an algorithm to construct Q such that the zero restrictions on the impulse
responses are enforced through constraints on Q.

Comparing the SRC and SRR methods
The SRC method was a way of generating a range of impulse responses

to uncorrelated shocks, so this is common to both SRR and SRC. It is worth
thinking about SRR when a Givens matrix approach is used and when n = 3.
Then three items need to be simulated - λ1, λ2 and λ3− and these correspond

10This statement assumes a zero mean for zt. It is worth observing that from equations
(18) and (19) of Fry and Pagan (2011) the SRR method applied to the market model
makes the structural parameters a function of the single parameter λ, and so selection of
a value for this gives demand and supply curves. The mapping between the market model
parameters and λ depends upon what model was chosen to initiate the process and the
cosine and sine terms of the Givens matrix.

18



to the three θj used by the SRC method, except that λ are uniformly gen-
erated over (0, π) and not over (-1,1). This equivalence remains for higher
order n. Therefore the computational demands of both methods have some
similarities, and problems arising from the dimensions of the system will be
the same for both methods. It should be noted however that, when paramet-
ric restrictions are also applied along with sign restrictions, the number of θj
may be much smaller, and this was seen in the earlier examples. Presumably
this would also be the case with the restricted Q matrices that get produced
by the Ariel et al. (2014) method.

So the difference between the methods comes down to how they perform
in applications and their flexibility. To address the first we applied SRR to
both the market model simulation data and the small macro model example.
In relation to the first, the best fit to the true impulse responses in the 500
simulations was

SRC =

[
.7369 .3427
.2484 −.3605

]
, SRR =

[
.7648 .3529
.2472 −.3563

]
.

There seems to be a slightly better fit to the true values by SRC, although
both methods work well. Turning to the small macro model, the SRRmethod
produced a range of impulse responses that were presented in Fry and Pagan
(2011). Comparing Figure 1 with the analogue (figure 1) in Fry and Pagan
(2011) it seems as if SRC produces a broader range of impulse responses
than SRR, e.g. the maximal contemporaneous effect of demand on output
with SRC is more than twice what it was in Fry and Pagan (we emphasize
that all impulse responses in figure 1 have the correct signs and they are all
observationally equivalent). Whether this is an advantage or not is a moot
point, as one might not be interested in extreme outcomes. It seems best
to conclude that SRC has the potential to at least match what comes from
SRR.

However, there are some extra advantages to SRC. First, as Pagan and
Robertson (1998) observed in the context of a parametrically restricted SVAR,
it is possible to get impulse responses with acceptable signs, even though the
underlying structural equations have incorrect signs for their coefficients. In
their case the IS curve had a negative real balance effect and the "correct"
signs for impulse responses came from some cancellation. One can safeguard
against this with SRC by imposing not only signs on the impulse responses
but also upon the structural coefficients. This may also serve to narrow the
range of impulse responses. Second, while the impulse responses produced by
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the SRR method is to one standard deviation shocks, the standard deviation
is not estimated by the method. As Fry and Pagan (2011) pointed out, those
using SRR often seemed to think that the responses were to one unit shocks,
which is incorrect. Hence, knowing the standard deviation of the shocks
would seem to be important for any policy discussions using sign-restricted
impulses.

How then is it that the standard deviations can be estimated either when
parametric restrictions or the SRC method are applied? The answer lies in
the normalization used in those methods. Once this is provided the implied
structural equations in the SRR method can be recovered, along with the
standard deviations of their shocks. To illustrate, take the market model in
(4)-(5), and write it in the form where A0 is normalized to have unity on
the diagonals and yt has quantity and price in it. The demand and supply
equations would then be

qt = −pt + η1t

pt =
1

3
qt −

√
2

3
η2t

=
1

3
qt − .4714η2t

Taking the C0 from SRR that was closest to the true value of the impulse

responses for the market model, namely C0 =

[
.7648 .3529
.2472 −.3563

]
, gives

C−1
0 =

[
.9905 .9810
.6872 −2.1262

]
. Thereafter utilizing A0 = C−1

0 and imposing

a normalization one gets the implied relations of

qt = − .9905

.9810
pt +

1

.9905
η1t

pt =
.6876

2.1262
qt −

1

2.1262
η2t

= .32qt − .4703η2t.

From these equations the standard deviations of the shocks will be 1.01 and
.4703 versus the true ones of 1 and .4714. Of course this means that, because
many impulse responses are produced by SRR (and SRC), there will be many
values for the standard deviations. Just as impulse responses need to be
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summarized in some way, this will be equally true of the standard deviations
of the shocks found from the many models. There is not just one single
standard deviation, unless a particular model is chosen by some criterion.

Some issues arising with sign restriction methods
It is worth observing that both SRC and SRR have a potential problem in

generating the widest possible range of impulse responses. For SRR this arises
in two ways. Firstly, in the selection of the initial set of impulse responses.
As mentioned earlier, this has been done by either the Cholesky or singular
value decompositions. The Cholesky decomposition requires an ordering of
the variables, so there will be different initial impulse responses depending on
which ordering one uses. Of course the SVD just adds another set. For any
given Q then we would get a different set of impulse responses depending on
which choice of factorization is used to initiate the process. Secondly, there
is Q itself. The Givens and simulation based method provides a Q with the
requisite properties, but there may well be others. If so, then one might
expect different impulse responses when those Q matrices are applied to the
same initial model.

This problem shows up with SRC as well. Now it is in terms of the
parameters that are taken to be unidentified and which need to be generated.
To be more concrete, consider the situation in section 3.2 where a012, a

0
13 and

a023 were the generated parameters. Instead one might have chosen a031, a
0
32

and a021. If so, estimation would have started with (8) rather than (6).
For both methods this is a potential problem but perhaps not a real

one (provided the number of trials is large). It may well be that the range
of impulse responses generated is much the same, regardless of either the
initial choice of impulse responses or the unidentified parameters. What
might happen is that some choices require more trials than others in order
to produce a relatively complete set of impulse responses. Fundamentally,
the issue arises because both SRR and SRC focus on first producing a set of
impulse responses to uncorrelated shocks, after which they can be checked to
see if they satisfy sign restriction information. However, neither shows that
this set is exhaustive.

It is worth observing that in section 3.5 there is only one structural equa-
tion estimated and so there are no other a0ij then the ones generated there.
This also occurs in the example of Gafarov and Olea (2015), who find maxi-
mum and minimum impulses by solving a quadratic programming problem,
where the constraints are the sign restrictions and any zero restrictions on
contemporaneous responses. Once they find the maxima and minima they
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use a delta method to get standard errors. Now maxima and minima are
also found using our simulation method. When these are found we also know
which models generated them i.e. the values of the generated coefficients,
and can therefore find the standard errors for the responses directly from
programs such as EViews, as it also uses a delta method. Our method has
an advantage of working when there are long-run restrictions and zero restric-
tions on other lags than the contemporaneous ones. Consequently it seems to
provide a relatively simple approach to doing the analysis that is in Gafarov
and Olea. One problem in their approach occurs in their empirical example,
where there is one shock and four variables. The maximum of the four im-
pulse responses will come from different models, as is clear in our work. So,
just like the problems identified with the median in Fry and Pagan (2011),
one would need to find a single model that had four impulse responses that
were as close as possible to the four maxima. One might proceed in the same
way as the Median Target Method of Fry and Pagan, but now the target
would be the impulse responses associated with the maxima.

Problems in using statistics such as the median also arise because a0ij
in SRC - and λj in SRR - are generated. As observed in section 3 this
will mean that the distribution of impulse responses will depend on the way
in which these quantities are generated. Hence quantities such as the me-
dian will change as the generation method changes. This point was made
by Baumeister and Hamilton (2014) in their critique of Bayesian methods
for summarizing the range of impulse responses. As Fry and Pagan (2011)
pointed out, the median has little to recommend it - when data is generated
from a model where the true impulse responses are known, they are often
found at percentiles well away from the median. Indeed, that is evident from
Table 2 where the true value of δ = −1 was far from the medians found with
both generating schemes. It seems less likely that the maxima and minima
of impulse responses coming from a data set will be affected by different gen-
erating methods, and that was the case in the experiment recorded in Table
2. It is really the range of responses that one can get which is of ultimate
interest.

5 Conclusion

The paper has outlined a method for handling sign restrictions in systems
of simultaneous equations which are only partially identified. These sign re-
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strictions might apply to either structural equation parameters or functions
of them such as impulse responses. Initially a range of values for the uniden-
tified parameters are generated and then the role of sign restrictions is to
narrow the range. It is simple to apply and can be handled in packages such
as EViews and Stata. Experiments show that it is no worse than existing
methods and has some advantages - it applies to any simultaneous equations
system and can incorporate a wider range of information e.g. on both the
parameters and impulse responses. One potential application of the method
is to micro-economic data sets, where parametric restrictions are often ap-
plied to produce estimates of items such as supply and demand elasticities,
but it might be felt that weaker information such as signs would be more
acceptable. Of course this comes at a cost in that there is no single estimate,
but a range of values might be acceptable for many policy analysts, and in
practice such scenarios are often considered.
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