User’s Guide : Advanced Single Equation Analysis : Robust Least Squares : References
Croux, C., G. Dhaene, and D. Hoorelbeke (2003). “Robust standard errors for robust estimators,” Discussion Papers Series 03.16, K.U. Leuven, CES.
Fung, Wing-Kam (1993). “Unmasking Outliers and Leverage Points: A Confirmation,” Journal of the American Statistical Association, 88(422), 515-519.
Holland, Paul W. and Roy E. Welsch (1977). “Robust regression using iteratively reweighted least squares,” Communications in Statistics - Theory and Methods, 6(9), 813–827.
Huber, Peter J. (1973). “Robust Regression: Asymptotics, Conjectures and Monte Carlo,” The Annals of Statistics, 1(5), 799–821.
Huber, Peter J. (1981). Robust Statistics. New York: John Wiley & Sons.
Hubert, Mia and Michiel Debruyne (2009). “Breakdown Value,” Wiley Interdisciplinary Reviews: Computational Statistics, 1(3), 296–302.
Maronna, Ricardo A., R. Douglas Martin, and Victor J. Yohai (2006). Robust Statistics. Chichester, England: John Wiley & Sons, Ltd.
Renaud, Olivier and Maria-Pia Victoria-Feser (2010). “A Robust Coefficient of Determination for Regression,” Journal of Statistical Planning and Inference, 140, 1852–1862
Ronchetti, Elvezio (1985). “Robust Model Selection in Regression,” Statistics & Probability Letters, 3, 21–23.
Rousseeuw, P.J. and A. M. Leroy (1987). Robust Regression and Outlier Detection. New York: John Wiley & Sons, Inc.
Rousseeuw, P. J. and Bert C. van Zomeren (1992). “A Comparison of Some Quick Algorithms for Robust Regression,” Computational Statistics & Data Analysis, 14(1), 107–116
Rousseeuw, P. J. and V. J. Yohai (1984), “Robust Regression by Means of S-Estimators,” in Robust and Nonlinear Time Series, J. Franke, W. Härdle, and D. Martin, eds., Lecture Notes in Statistics No. 26, Berlin: Springer-Verlag.
Saliban-Barrera, Matías, and Víctor J. Yohai (2006). “A Fast Algorithm for S-Regression Estimates,” Journal of Computational and Graphical Statistics, 15(2), Pages 414–427.
Yohai, Víctor J. (1987). “High Breakdown-Point and High Efficiency Robust Estimates for Regression,” The Annals of Statistics, 15(2), 642-656.