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EViews 10 added new features to its VAR/SVAR object that allowed users
to impose a richer range of restrictions to identify the system, including para-
metric restrictions on the descriptive VAR and combined short-and long-run
restrictions. EViews estimates the unknown parameters of the SVAR using the
maximum likelihood estimator and non-linear optimization techniques. Conver-
gence is typically fast provided the starting values for the unknown parameters
are reasonable. In practice, however, it is difficult to set useful starting values,
resulting in convergence issues that are difficult to resolve.

As explained in Ouliaris, Pagan and Restrepo (2016), henceforth OPR, for
exactly identified SVARs, where the number of moment restrictions available for
estimation is identical to the number of parameters, the Maximum Likelihood
estimator (MLE) is identical to an instrumental variables (IV) estimator. The
IV estimator is used in OPR to handle most of the combinations of restrictions
that are now supported explicitly by the SVAR object in EViews 10.

IV estimation has the advantage of requiring only the use of the linear two
stage least squares estimator, thereby avoiding numerical optimization issues.
As such, it provides a natural mechanism for finding starting values for the MLE
estimator.

Given the restrictions implied in the A,B, S, and F matrices1 of the SVAR,
and any zero restrictions on the lagged variables of the descriptive VAR, this
add-in builds the corresponding IV regression objects required to estimate the
SVAR. It then uses the IV estimates to initialize the MLE/SVAR estimator.
Because the starting values are equivalent to the ML estimator, convergence is
quick and typically without any numerical issues.

This add-in is especially useful for procedures that depend on repeated invo-
cations of the MLE routine, e.g., bootstrap procedures to estimate the standard
errors or Monte-Carlo experiments.
∗sam.ouliaris@gmail.com
†adrian.pagan@sydney.edu.au
1In EViews notation, the basic model is Au = Be, where u represents the residuals of the

descriptive VAR and e denotes the structural errors, S = A−1B is a square matrx showing
the short-run restrictions, while F shows the long-run restrictions.
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Using the IV/MLE Add-in
Once installed, the add-in can be invoked from the “Add-ins” menu after the
VAR has been estimated. This is shown in Figure 1.

For the purpose of explaining how the add-in works, consider a 4 variable
VAR with 2 lags. The variables in the VAR are the de-meaned change in
the real GDP (called DGDP in the data set), the nominal interest rate (R),
the inflation rate (INFL), and the real trade-weighted index for the Australian
dollar (RTWI). The objective is to estimate a VAR with short-run and long-run
restrictions, allowing for any zero restrictions on the descriptive VAR. Both the
data and the VAR object can be found in the workfile called svarozdata.wf1 (see
“opensigns”).

Clicking on the “Add-ins” menu reveals a menu entry that invokes the “IV
MLE SVAR Estimation Utilty” (Figure 1).

Clicking on this menu item invokes the add-in and produces the following
screen:
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for which the user is required to provide entries that specify the following
four matrices A,B, S, F that describe the SVAR and any restrictions on the
lagged variables in the descriptive VAR.

• VAR Object: the name of the VAR object to use in the active pagefile
(in this case “opensigns”)

• The A restriction matrix (workfile name): the name of a square ma-
trix in the active pagefile detailing the required restrictions on the A ma-
trix of the SVAR (i.e., on the contemporaneous coefficients). In this exam-

ple, the matrix’s name isA_MAT and has the form:


1.0 NA NA NA
NA 1.0 NA .036
NA NA 1.0 NA
NA NA NA 1.0

.
Note that there are two sets of restrictions imposed on A. First a normal-
ization that sets A(i, i) = 1 and second the contemporaneous coefficient
between the nominal interest rate and the real trade weighted dollar in-
dex (A(2, 4))), which is set to 0.036. The remaining contemporaneous
parameters in the system are freely estimated.

• The B restriction matrix (workfile name): the name of a square
matrix showing the required restrictions on the variance-covariance ma-
trix of the structural errors. This matrix is typically a diagonal matrix
with NA terms that represent the unknown variances of the structural
errors. In this example, the name of the matrix is B_MAT and it has

the form:


NA 0 0 0
0 NA 0 0
0 0 NA 0
0 0 0 NA

, i.e., the structural shocks are uncorre-
lated.

With the assumption regarding B above and A having equations normalized
via the unit entries on the diagonal, OPR (Section 4.4.2) show that to identify
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the parameters of the SVAR requires 6 restrictions. One is already present in
A, i.e. A(2, 4) = 0.036, so five more restrictions are needed, and these will be
described in the S and F matrices.

• The S restriction matrix (workfile name) is the name of a square ma-
trix stating the “short-run” restrictions to be imposed on the contempora-
neous impulse response functions. In this example, the name of the matrix

in the workfile is S_MAT and it has the form:


NA 0 0 NA
NA NA NA NA
NA NA NA NA
NA NA NA NA

,
imposing 2 zero restrictions. These imply that the growth in demeaned
real GDP is contemporaneously invariant to both inflation and interest
rate shocks. Because S = A−1B, prescribing S in this way effectively
imposes restrictions upon A, and one must be careful to ensure that
these do not conflict with any of the explicit restrictions placed on A.

For example, if we set A =


1.0 0 0 0
NA 1.0 NA .036
NA NA 1.0 NA
NA NA NA 1.0

 , this implies that

S =


NA 0 0 0
NA NA NA NA
NA NA NA NA
NA NA NA NA

 . However, the first row of S does not rep-

resent any new restrictions, and so we would need to use the default

S =


NA NA NA NA
NA NA NA NA
NA NA NA NA
NA NA NA NA

. Of course after estimation EViews will

show that S =


NA 0 0 0
NA NA NA NA
NA NA NA NA
NA NA NA NA

 .

• The F restriction matrix (workfile name): the name of a square
matrix showing the “long-run” restrictions to be imposed on the structural
VAR, i.e., the impact of shocks upon the levels of the I(1) variables in
the system. In this example, the name of the matrix is F_MAT and

it has the form:


NA 0 0 0
NA NA NA NA
NA NA NA NA
NA NA NA NA

. The zero entries impose the

requirement that the accumulated response of the log of real GDP to the
three transitory shocks is zero in the long run, i.e. only the first shock has
a long-run impact upon the I(1) variable, which is the log level of GDP.

• (Optional) A name tag (string) for the workfile matrices that deter-
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mine whether or not the lagged coefficients of the structural VAR will
be constrained to zero. For example, if the name tag is “_lagged” and
the lag order of the VAR is N, the add-in will expect matrices named
“_lagged1 _lagged2 _lagged3 ... _laggedN” in the current pagefile. Set-
ting _lagged2(i,j) = 0 constrains the second lag of the jth variable in
the ith equation to be zero, i.e., in terms of the EViews10 screen when
i = 1, j = 3 this would imply L2(1, 3) = 0. It will not be constrained
if _lagged2(i,j) = NA. Note that if the VAR object already has con-
straints (EViews 10 and above), these will be overridden by the settings
in “_lagged1 _lagged2 _lagged3 ... _laggedN”. Leave this field empty to
use the embedded constraints in the VAR (if any).

• (Optional) A name tag (string) for the workfile matrices that determine
whether or not the coefficients of the exogenous variables of the VAR will
be constrained to zero. For example, if the tag is “_exog”, and there are
N exogenous variables, then the add-in will expect the matrices “_exog1
_exog2 _exog3 ... _exogN” in the current pagefile. By default, the add-in
will always include the constant in position 1 (irrespective of the position
the constant takes in the exogenous variable list). Hence, _exog1(i) = 0
constrains the constant term of the ith equation to be zero, while _exog1(i)
= NA removes the same constraint. Note that if the VAR object has
existing constraints on the exogenous variables, these will be overridden
by the constraints specified in “_exog1 _exog2 _exog3 ... _exogN”. Leave
this field empty to use the embedded constraints in the VAR (if any).

• (Optional) An Output Tag (for naming purposes): this is a string
that will be appended to all the regression objects created by the add-in.
This is useful for cases where the user wishes to compare the estimated
parameters across different settings of the restriction space. The default
output tag is “mle”.

• (Optional) The Show IV regressions check box: when checked, the add-
in will display the IV regressions estimated by the add-in. The default is
not to display these regressions.

Clicking on the OK button starts the estimation procedure. The descriptive
VAR is re-estimated and its residuals are saved in the workfile
(see “var_mle_res_eqn_#” , where # [1,2,3, ...] indicates the equation
number).2 Given the current settings of the A,B, S and F matrices, the im-
plied IV regressions are constructed and estimated (see “iv_mle_eqn_#”
) and their residuals may be used as instruments in the remaining IV regres-
sions–see OPR (Section 6.4.1.2) on this. In what follows we refer to these as
processed instruments because they are constructed from a regression. Next
the starting values for the MLE procedure are saved in a vector called “start-
ing_values_mle” and the output from the SVAR routine is saved as “svar_output_mle”

2Notice the use of “_mle_” in the naming scheme of the workfile objects. It is controlled
by the current setting of the output tag, in this case “mle” (see above).
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in the workfile. Lastly, the estimated values of A, B, S, and F are saved in the
current pagefile as a_mle, b_mle, s_mle and f_mle.

Algorithm: No Restrictions on the Descriptive VAR
Given zero restrictions in the A,B, S, and F matrices, the add-in works as
follows:

1. Suppose A[i, j] is set to a numeric value. Then the coefficient on the
jth endogenous (contemporaneous) variable in the ith IV equation will
be constrained to that value. It follows that the jth endogenous variable
is omitted from the ith equation when A[i, j]=0. The unity terms on
the diagonal of A, namely A[i, i] = 1, imply a normalization, flagging the
dependent variable of each IV equation. The number of NA entries in each
row of A is the number contemporaneous parameters to be estimated, for
which instruments are needed to satisfy the standard order condition for
identification of the IV regression. This requires that there are at least as
many instruments as there are coefficients in the equation. The required
instruments may be actual series in the workfile or generated from other
regressions, as explained in the following steps.

2. If S[i, j] = 0, then the residuals of the ith equation of the descriptive VAR
are uncorrelated with the jth structural error by assumption and therefore
can be used as an instrument in the jth IV regression. See OPR (Section
6.4.4) for a detailed example of this case using the Peersman (2005) model.

3. If F [i, j] = 0, then for the ithequation the jth endogenous variable and its
associated lags will be replaced with their first difference and the maximum
order of the lag in these differenced variables will be reduced by one. The
resulting residuals can be used as an instrument in the other IV equations.
See OPR (Section 6.4.1.2) for an explanation.

4. The IV parameter estimates are used as starting values for the EViews
SVAR routine. The MLE estimates/standard errors will be shown on the
screen and saved as an object in the current workfile (see
“svar_output_{output tag}”)

The add-in works internally as follows. First it determines for each equation the
number of contemporaneous parameters that need to be estimated from the A
matrix and hence the number of processed instruments required for the order
condition to be met. The equations then are ranked according to the number
of processed instruments required by equation, starting from lowest to highest.
The IV regression requiring the least number of processed instruments is esti-
mated first, and its residuals become the first processed instrument available for
identifying the remaining equations in the system.

The IV regression with the next smallest required instrument count is then
estimated. At this point, the add-in will use the estimated residuals of the IV
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regressions that were estimated before the active regression, and, depending on
the presence and location of the zero restrictions in the S matrix, the residuals
of the descriptive VAR.

This process continues until the last structural equation is estimated, using
all the residuals generated from the previously estimated equations as instru-
ments–see OPR (Section 6.4.4) for an illustration.

Algorithm: Restrictions on the Descriptive VAR
The algorithim is essentially the same when there are zero restrictions on the
lagged variables of the descriptive VAR. Given these restrictions, the add-in as-
sesses whether a processed instrument is valid for the current IV equation. For
example, suppose the VAR includes a set of variables that is block exogenous
relative to the remaining variables in the system (e.g., it has a domestic and a
foreign sector, and the domestic sector does not influence the foreign sector).
Processed instruments derived from the endogenous block cannot be used as
instruments for variables belonging to the exogenous block and the add-in en-
forces this requirement. Lastly, restrictions on the exogenous variables of the
descriptive VAR are not imposed on the IV regressions because, from a theo-
retical perspective, zero restrictions on the descriptive VAR do not imply that
the same restrictions apply in the structural VAR, and it is the latter we are
fundamentally interested in.

Output
We look at the example mentioned earlier with the variables DGDP, R, INFL
and RTWI. Here the restrictions give matrices

A =


1.0 NA NA NA
NA 1.0 NA .036
NA NA 1.0 NA
NA NA NA 1.0

 , B =


NA 0 0 0
0 NA 0 0
0 0 NA 0
0 0 0 NA



S =


NA 0 0 NA
NA NA NA NA
NA NA NA NA
NA NA NA NA

 , F =


NA 0 0 0
NA NA NA NA
NA NA NA NA
NA NA NA NA

 .

We then estimate the model using IV regressions in the order presented. The
internal operation of the add-in is explained under each regression.

1. TSLS DGDP C D_R D_INFL D_RTWI DGDP(-1 TO -4) D_R(-1 TO
-3) D_INFL(-1 TO -3) D_RTWI(-1 TO -3) @ C DGDP(-1 TO -4) R(-1 TO
-4) INFL(-1 TO -4) RTWI(-1 TO -4) [iv_mle_eqn_1 in the workfile]

(a) This is the first equation in the SVAR. It is estimated first because
it does not require any additional instruments.
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(b) DGDP is the dependent variable of the equation, since A(1, 1) = 1.
DGDP(-1 TO -4) R(-1 TO -4) INFL(-1 TO -4) RTWI(-1 TO -4)
are included as explantory variables, reflecting the lag order of the
descriptive VAR (i.e, 4).

(c) The remaining endogeneous variables (i.e., R, INFL, and RTWI) are
included in first difference form (i.e., D_R D_INFL, and D_RTWI),
reflecting the zero restrictions in the F matrix (first row), and the
maximum lag length for each of the endogenous variables is reduced
from 4 to 3.

(d) Because of (b), the first lags of R, INFL and RTWI may be used as
instruments for D_R, D_INFL, and D_RTWI, but these are already
included in the instrument list (see (c)). The order condition for the
IV regression is satisfied and no additional instruments are required.

(e) The residuals of this regression (IV_MLE_RES_EQN_1) may be
used to identify the remaining IV regressions in the system. We
describe these these residuals as a “processed” instrument compared
to a normal variable created outside of the regression steps (e.g.,
lagged R) .

2. TSLS (R+0.036*RTWI) C DGDP INFL DGDP(-1 TO -4) R(-1 TO -4)
INFL(-1 TO -4) RTWI(-1 TO -4) @ C DGDP(-1 TO -4) R(-1 TO -4) INFL(-1
TO -4) RTWI(-1 TO -4) VAR_MLE_RES_EQN_1 IV_MLE_RES_EQN_1
[iv_mle_eqn_2 in the workfile]

(a) This is the second equation in the SVAR. It is estimated second be-
cause it has only 2 contemporaneous variables on the RHS, implying
the need for 2 additional intruments, which is less than the number
required for IV equations 3 and 4 (see below).

(b) (R+0.036*RTWI) is the dependent variable of the equation, since
A(2, 2) = 1 and A(2, 4) = 0.036.

(c) The residuals from the first equation of the descriptive VAR
(VAR_RES_EQN_1) is the first processed instrument. It is a valid
instrument because, by assumption, monetary shocks do not affect
DGDP in the short-run (S(1, 2) = 0). The remaining instrument is
the processed instrument obtained from Step 1
(i.e., IV_MLE_RES_EQN_1).

(d) The residuals of this regression (i.e., IV_MLE_RES_EQN_2) can
be used to identify the remaining IV regressions in the system.

3. TSLS INFL C DGDP R RTWI DGDP(-1 TO -4) R(-1 TO -4) INFL(-1 TO
-4) RTWI(-1 TO -4) @ C DGDP(-1 TO -4) R(-1 TO -4) INFL(-1 TO -4)
RTWI(-1 TO -4) VAR_MLE_RES_EQN_1 IV_MLE_RES_EQN_1
IV_MLE_RES_EQN_2 [iv_mle_eqn_3 in the workfile]

(a) This is the third equation in the SVAR. It is estimated third because
it has 3 contemporaneous variables on the RHS, implying the need
for 3 additional instruments.
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(b) INFL is the dependent variable of the equation, since A(3, 3) = 1.

(c) The residuals from the first equation of the descriptive VAR
(VAR_MLE_RES_EQN_1) is a valid instrument because, by as-
sumption, the demand shock does not affect DGDP contemporane-
ously (S(1, 3) = 0). The remaining instruments are the processed
instruments obtained from Steps 1 and 2
(i.e., IV_MLE_RES_EQN_1 and IV_MLE_RES_EQN_2).

(d) The residuals of this regression (IV_MLE_RES_EQN_3) can be
used to identify the last IV regression in the system.

4. TSLS RTWI C DGDP R INFL DGDP(-1 TO -4) R(-1 TO -4) INFL(-1
TO -4) RTWI(-1 TO -4) @ C DGDP(-1 TO -4) R(-1 TO -4) INF(-1 to -4)
RTWI(-1 TO -4) IV_MLE_RES_EQN_1 IV_MLE_RES_EQN_2
IV_MLE_RES_EQN_3 [iv_mle_eqn_4 in the workfile]

(a) This is the fourth equation in the SVAR. It is estimated last because
it has 3 contemporaneous variables on the RHS, implying the need
for 3 additional instruments.

(b) RTWI is the dependent variable of the equation, since A(4, 4) = 1.

(c) The 3 instruments (all processed) are the residuals from the other IV
regressions (i.e., IV_MLE_RES_EQN_1, IV_MLE_RES_EQN_2
and IV_MLE_RES_EQN_3).

The add-in saves the IV parameter estimates in a vector called
starting_values_mle, transfers them to the EViews C matrix (which con-
tains the starting values of the coefficients to be estimated) in the correct order,
and then invokes the SVAR routine with the following command:

1. OPENSIGNS.SVAR(F0=S,A=A_MAT,B=B_MAT,S=S_MAT,F=F_MAT)3

Note that “F0=S” simply instructs EViews to use the starting values in the
current C vector of the workfile and the “S” in F0=S has no relation to the
S matrix defined earlier. The output is saved in the workfile as a text ob-
ject called svar_output_mle, and the estimated A, B, S, and F matrices are
saved in the current pagefile as “a_mle”, “b_mle”, “s_mle” and “f_mle”.
The actual IV regression commands issued by the add-in are logged in “ive-
qns_mle_estimated”.

3The add-in actually works with a copy of the VAR object OPENSIGNS called “_OPEN-
SIGNS_” that is created by the add-in. This ensures that the original VAR object is not
changed by the workings of the add-in.
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Limitations
1. The IV/MLE add-in can handle general numeric restrictions in the A

matrix, but only zero restrictions in the S and F matrices.

2. The SVAR must be exactly identified.

3. The add-in does not support restrictions on the exogenous variables of
the SVAR. This is due to the fact that zero restrictions on the exoge-
neous variables of the descriptive VAR do not necessarily imply the same
restrictions for the SVAR.
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